An Approach for Fast Statistical Data Extraction from Biomedical Objects

Aleksandrs Sisojevs, Rihards Starinskis


The statistical data of biomedical object is very important input information for medical diagnostics or/and anatomical pathology research. The approach for this data extraction is photo survey of biomedicine object and next image processing, based on image segmentation. For image segmentation methods of pattern recognition can be used. In the present research, the authors implement different methods for extracting the statistical data from images. The experimental results show the efficiency of the selected methods and proposed modification.


Aortic valve; pattern recognition; segmentation; statistics

Full Text:



A. Sisojevs, K. Boločko, R. Starinskis, “An Approach for Statistical Data Extraction from Photo Images of Pathological Biopsy Objects,” RTU Journal, Technologies of Computer Control, vol. 15, 2014, pp. 5–13.

Freeman RV, Otto CM, Chapter 76. “Aortic Valve Disease.” In: Fuster V,Walsh RA, Harrington RA. eds. Hurst's The Heart, 13e. New York, NY: McGraw-Hill; 2011.

Smith CR, Leon MB, Mack MJ, et al., for the PARTNER Trial Investigators. “Transcatheter versus surgical aortic-valve replacement in high-risk patients.” N Engl J Med, 2011, 364, pp. 2187–98.

Omar K. Khalique, MD, Rebecca T. Hahn, MD, Hemal Gada, MD et al “Quantity and Location of Aortic Valve Complex Calcification Predicts Severity and Location of Paravalvular Regurgitation and Frequency of Post-Dilation After Balloon-Expandable Transcatheter Aortic ValveReplacement,” JACC Cardiovasc Interv., vol. 7, no. 8, 2014.

P.Stradiņš, M.Kalējs, I. Brečš Aortas vārstuļa stenoze – diagnoze un ārstēšana Latvijas Ārsts, 05/04/2013.

2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease A Report of the American College of Cardiolog.

J. D. Miller, R.M. Weiss, D.D. Heistad, “Calcific Aortic Valve Stenosis: Methods, Models, and Mechanisms,” Circ. Res.

M. Misfeld, H.-H Sievers, “Heart valve macro- and microstructure,” University of Luebeck, Clinic of Cardiac and Thoracic Surgery,RatzeburgerAllee 160, 23538 Luebeck, Germany.

Guidelines on the management of valvular heart disease (version 2012) The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS).

E. Fix, J.L. Hodges, Discriminatory analysis, nonparametric discrimination: Consistency properties. Technical Report 4. - USAF School of Aviation Medicine, Randolph Field, Texas, 1951.

E. Fix, J.L. Hodges, Discriminatory analysis—nonparametric discrimination: small sample performance. Technical Report, - USAF,TX, 1952. (Reprinted as pp. 280–322 of Agrawala, 1977.)

R. O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd Edition. Wiley-Interscience, 2000.

N.J. Nilsson, The Mathematical Foundations of Learning Machines. San Francisco: Morgan Kaufmann, 1990.

E.A. Patrick, Fundamentals of pattern recognition. Prentice-Hall, 1972.

T.M. Mitchell, Machine Learning, McGraw-Hill Science, 1997.

R. Starinskis, V. Groma, A. Sisojevs, “Aortas vārstuļa stenozesmorfoloģiskā un datorizētā attēlu analīze,” RSU XIX Morfoloģisko zinātņu konferences referātu tezes. Rīga: Rīgas Stradiņa universitāte, lpp. 38.–39., 2014.

D. Randall Wilson, T. R. “Martinez, Improved Heterogeneous Distance Functions.” Journal of Artificial Intelligence Research, vol. 6, pp. 1–34, 1997.

R.Euler, J.Sadek, “The πs Go Full Circle.” Mathematics Magazine, vol. 72, no. 1, pp. 59–63, 1999.

R. Jin, S. Wang, Y. Zhou, “Regularized Distance Metric Learning: Theory and Algorithm,” Advances in Neural Information Processing Systems 22, pp. 862–870, 2009.

DOI: 10.7250/tcc.2015.009


  • There are currently no refbacks.