Choice of Interpolation Method for an Arbitrary Arc Welding Curve

Olesja Minejeva, Zigurds Markovics

Abstract


Practical application of the classical methods of in-terpolation, such as Lagrange’s, Bessel’s, Stirling’s, Newton’s and others, cannot always provide sufficient accuracy in the restoration of lines according to the requirements of modern technologies. In this paper, recommendations for the improve-ment of interpolation accuracy are given, including the transition to the method of cubic splines. The results of research are used to create a route for arc welding in order to increase the perfor-mance of industrial robot.

Keywords:

Arbitrary curve; accuracy; cubic splines; degrees of polynomials; finite differences; interpolation; polynomials; welding

Full Text:

PDF

References


Jurevich, E.I. Osnovy robototehniki. Leningrad: Mashinostroe-nie, 1985. 271 s.

Bronshtejn, I.N., Semendjaev, K.A. Spravochnik dlja inzhenerov i uchashhihsja VTUZov. Moskva: Nauka, Lejpcig: Tojbner, 1981. 719 s.

Zviedris A. Datorrealizācijas matemātiskās metodes. Rīga: RTU, 2004. 76 lpp.

Kalitkin, N.N. Chislennye metody. Moskva: Nauka, 1978. 512 s.

Macokin, A.M., Sorokin, S.B. Chislennye metody: Kurs lekcij. Novosi-birsk: Novosibirskij gosudarstvennyj institut, 2006. 132 s.

K.E. Atkinson, An Introduction to Numerical Analysis. John Wiley & Sons, Inc., New York, 1978, p. 587.

D.B. Small, J.M. Hosack, Explorations in Calculus with a Computer Algebra System. McGraw – Hill, USA, 1990, p. 226.

Vigodskis M. Augstākās matemātikas rokasgrāmata. Riga: Liesma, 1968. 948 lpp.

P.J. Hartley, A.Wynn- Evans, A Structured Introduction to Numerical Mathematics. Stanley Thrones Ltd, England, 1979, p. 456.

Iltiņa, M., Iltiņš I., Veģere S. Skaitliskās metodes un to realizācija ar datorprogrammu MATHEMATICA5. Mācību līdzeklis. Rīga: RTU, 2012. 121 lpp.

J. H. Ahlberg, E.N. Nilson, J.L. Walsh, “The Theory of Splines and Their Applications”, Mathematics in Science and Engineering, vol. 38. New York: Academic Press, 1967, p. 284.

Nikulin, E.A., Kompjuternaja geometrija i algoritmy mashinnoj grafiki. Sankt-Peterburg: BHV-Peterburg, 2003. 560 s.

W.T. Lee, “Tridiagonal Matrices: Thomas Algorithm”, Scientific Com-putation, University of Limerick, [Online]. Available: http://www3.ul.ie/wlee/ms6021_thomas.pdf

J. Rowell, Mathematical Modelling with MathCAD. Addison-Wesley Publishing Company, Inc. 1990, p. 157.




DOI: 10.7250/tcc.2015.004

Refbacks

  • There are currently no refbacks.