
Technologies of Computer Control 

2014 / 15 ______________________________________________________________________________________________  

56 

Node Synchronization Across Two-layered 

Heterogeneous Clustered Wireless Sensor Network 

Gundars Miezitis1, Romans Taranovs2, Valerijs Zagurskis3, 

1–3 Riga Technical University

Abstract―Time synchronization is a mandatory feature needed 

for Wireless Sensor Network to operate consistently and to be 

capable to chronologically link to global time. Time 

synchronization is important when the sensor nodes employ 

TDMA [9] based medium access protocols and when sensor nodes 

want to operate on some time managed schedule as well. Time 

stamping is one of the most widely used approaches, because of 

simple implementation and of being quite precise. Based on the 

time stamp exchange approach we provide network wide 

synchronization that employs neighbouring node information to 

determine if synchronization should be continued on the same 

level or in the second level of nodes. 

 

Keywords―Synchronization, two layered network, wireless 

sensor network. 

I. INTRODUCTION 

The advancement of Wireless Sensor Network (WSN) has 

enabled, but not limited to, subtle monitoring of different 

environments, including buildings, forests, even volcanoes and 

different activities performed by animals or humans.  

WSN is built from devices as small as about the size of a 

matchbox, called sensor nodes, that are capable of computing, 

data relaying to each other, sensing phenomena, in some cases 

even interacting with environment and are powered with 

batteries [10]. This allows a WSN user to discretely monitor the 

object of interest in great detail for a long period of time. 

Furthermore, these objects do not have to be located close to the 

existing network infrastructure – nodes organize in a way that 

data is routed, in general, to a single point where it is forwarded 

to global network via satellite, Wi-Fi or other method. But the 

reported data to be meaningful in scope of time, precise 

information of when certain events happened in the monitored 

area must be included. This leads to the necessity of time 

synchronization of WSN nodes. Furthermore, depending on the 

application the data fusion/aggregation, TDMA and the sleep 

cycles for nodes to operate correctly, nodes need to have time 

synchronization set-up and working on the node.  

But the main goal of WSN is to relay the measured data of 

phenomena or object to the user. So the nodes must operate as 

an autonomous network altogether. In our previous work [5] we 

proposed to use a two layered architecture of WSN where the 

first layer consists of clustered WSN nodes and the second layer 

consists of gateways (GW). We chose to further investigate this 

architecture, thus the focus of this paper is to design a 

synchronization approach within this WSN architecture. 

II. BACKGROUND 

A. Time Synchronization 

Time synchronization is described as a process of 

synchronizing sensor nodes local clock either with other nodes 

or group of nodes or with some global time scale, like UTC [1]. 

The time synchronization algorithm is described by its 

properties and structure which can be classified according to the 

following criteria [8]: 

 Physical time – e.g. UTC, versus logical time – e.g. 

counting events; 

 External versus – e.g. UTC, versus internal 

synchronization – e.g. local network time; 

 Global – e.g. synchronize all nodes, versus local algorithm – 

e.g. synchronize partition of network; 

 Hardware – e.g. GPS module on node, versus software 

based synchronization – e.g. packet forwarding; 

 A priori – e.g. synchronization is performed during all 

network lifetime, versus a posteriori synchronization – e.g. 

synchronization is performed only after the event has been 

detected; 

 Deterministic – e.g. guaranteed upper bound of 

synchronization error, versus stochastic precision bounds – 

e.g. stochastic upper bound of synchronization error. 

After performing some analysis we have chosen the 

following criteria that should be implemented in the time 

synchronization algorithm for the two layered network: 

physical time, internal (with choice of external) time, global, 

software, a priori and with deterministic precision bounds. 

The synchronization algorithm can be analysed using the 

following performance metrics [8]: 

 Precision – e.g. maximum synchronization error between 

a node and real time or between two nodes; 

 Energy cost – e.g. energy cost of the time synchronization 

protocol. This metric depends on several other factors: the 

number of packets exchanged in one round of the 

algorithm, the amount of computation needed to process 

the packets, and the required resynchronization frequency; 

 Memory requirements – e.g. estimating drift rate, the 

history of previous time synchronization packets is 

needed, meaning ‒ a longer history gives more precise 

results, but expends more memory; 

 Fault tolerance – e.g. is determined by the algorithm 

capability to cope with failing nodes, with error‒prone and 

time variable communication links, or even with network 

partitions and node mobility. 

doi: 10.7250/tcc.2014.008 



Technologies of Computer Control 

 ______________________________________________________________________________________________ 2014 / 15 

57 

B. Related Work 

Traditional synchronization protocols used for wired 

networks (e.g., the Network Time Protocol (NTP) or the 

Precision Time Protocol (PTP)), as well as some wireless 

specific protocols (such as the IEEE 1588v2 and the IEEE 

802.1AS) are usually not suitable for WSNs due to the 

limitations of node hardware and energy resources available for 

them [2].  

Thus several WSN-specific synchronization protocols have 

been developed. Among them are [4]:  

Time-Stamp Synchronization (TSS) protocol [4] – protocol 

uses round trip measurement of four messages. When 

timestamp is sent, the receiver ads to it calculated difference 

from roundtrip measurements. Disadvantage – it can lead to 

excess energy usage because of the message exchange; 

Reference-Broadcast Synchronization (RBS) protocol – the 

transmitter broadcasts the reference packet to two receivers 

(e.g. i and j) via physical-layer broadcast. Each receiver records 

the time when the reference was received, according to its local 

clock. The receivers exchange their observations. Disadvantage – 

it cannot be used in the networks which employ point-to-point 

links, because it has a physical broadcast channel [4]; 

Timing-sync Protocol for Sensor Networks (TPSN) [6], – 

sender‒receiver synchronization, works in two phases. Phase 1: 

A level (1 – n) is assigned to each node in the spanning tree 

hierarchical structure. Phase 2: the sender from the lower level 

synchronizes with the receiver in the higher level trough two-

way messaging. After that the original sender can calculate the 

clock drift  and the propagation delay d [4]. Disadvantages 

include – spanning tree creation; 

Lightweight Tree-based Synchronization (LTS) – provides a 

specified precision with little overhead. It realizes two 

algorithms that require nodes to synchronize to some reference 

points such as sink node. The first algorithm uses a centralized 

approach ‒ the spanning tree is constructed first and then the 

nodes are synchronized along the (n-1) edges of the spanning 

tree. The root of the spanning tree is the reference node. The 

second algorithm works in a distributed manner and each node 

can decide the time for its own synchronization. The spanning 

tree structure is not used in this version of algorithm [4]; 

And other approaches: Flooding Time Synchronization 

Protocol (FTSP), Interval-Based Synchronization (IBS), Tiny-

sync protocol [8]. 

C. Network Architecture 

We have previously [5] proposed to use a two layered WSN 

architecture that relieves some of the fundamental WSN 

problems. Like, for example, we have gained a more 

deterministic network architecture and separation between 

WSN and the network that is responsible for interconnecting 

different parts or partitions of the network. This as well 

simplifies the necessary data transportation protocol, because 

the cluster works only on one hop basis. But the second network 

layer can use some higher layer transportation protocol. This is 

described in more detail in [5] and we refer the interested reader 

to that paper.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Two layer network architecture. 

The WSN structure used here consists of two layers – WSN 

node layer and GW layer, depicted in Fig. 1. The lines between 

the nodes indicate communication links; red nodes are elected 

Cluster Sinks (CS). WSN nodes are arranged in clusters, as this 

approach can ensure increased energy efficiency, routing and 

easier network scaling. Within the scope of this paper we are 

not interested in how clusters are formed or how cluster head is 

elected, but we know that all sensor nodes are homogeneous, 

meaning, they have the same hardware and software running on 

them. The second, GW layer, is formed again from 

homogeneous gateway nodes, and again hardware and software 

here is the same on each and every node.  

As seen in Fig. 1, communication link is possible between  

1) cluster nodes and the cluster sink (CS), 2) CS and available 

GW or GWs, 3) between cluster heads only by using GW as 

proxy, 4) between GWs themselves, 5) between GWs and the 

user. We assume that GWs can always communicate with each 

other. 

D. Assumptions and Limitations 

So far there are some assumptions of synchronization 

approach we can devise from the presented information: 

1) Network route from the sensor node to the user is quite 

simple, because, at minimum, there are only three 

communication hops to reach the user; 

2) From network architecture we can easily obtain the 

synchronization hierarchy and constructing it does not 

involve separate algorithms or steps, meaning that the 

lower level node synchronizes to a higher layer node – GW 

synchronizes to, for example, NTP server or other time 

provider; CS to GW and Cluster Nodes (CN) to CS; 

3) Due to GW position being sporadic, not always cluster 

heads can have access to the external network. So the GWs 

must employ mechanism that can synchronize clusters in 

multi‒hop manner; 

4) Cluster N is covered by at least one GW – on its own 

ensuring all node or in our case cluster coverage is a 

Clusterized 

WSN layer

Gateway

 layer 

User

Etherent/ Internet

/ Wi-Fi/ GSM

1. cluster 2. cluster m. cluster

1. gateway 2. gateway n. gateway



Technologies of Computer Control 

2014 / 15 ______________________________________________________________________________________________  

58 

separate problem in WSNs and is included as a future 

research topic. 

 

In [4] it is pointed out that there are several limitations that 

should be taken into account when choosing or devising the 

synchronization scheme. Namely, this adds to the following 

aspects of limitations: 

Energy efficiency: Synchronization should not drastically 

increase energy consumption; 

Scalability: As the sensor node count increases/decreases the 

synchronization should not be affected by changes in topology; 

Precision: Depending on application some may need 

microsecond accuracy while others may just require the 

ordering of events; 

Robustness: Synchronization scheme should be robust 

against the link and node failures. For this purpose, usually, 

more than needed sensor nodes are deployed in a relatively 

small area; 

Lifetime: Here it is decided whether the synchronization is 

needed for an instant, or for the entire lifetime of the network; 

Scope: The scope decides whether the nodes are 

synchronized network wide or locally, among nodes that are 

spatially close; 

Cost: What costs are incurred while deploying the scheme. 

Since the sensor networks are often deployed in remote areas, 

it is better not to rely on sophisticated hardware infrastructures 

like GPS receivers. Rather, an internal synchronization is 

enough if implemented appropriately. 

E. Synchronization Problems and Errors 

Achieving synchronization is not an easy task because due to 

the following non-deterministic delay is introduced [1] and [4]: 

1) Send Time. The time spent to assemble a packet and to 

send it to the MAC layer. This time includes kernel 

processing and the delay introduced by the operating 

system, if there is one; 

2) Access Time. This is the time loss experienced while 

waiting to access the transmission channel. It depends on 

the specific MAC protocol used; 

3) Transmission Time. The time the sender spends to transmit 

the packet bit by bit. Influenced by baud rate and packet 

size; 

4) Propagation Time. The time needed for the packet to be 

transmitted from the sender to the receiver. It is the 

physical propagation time of the packet through the media 

channel and this is small enough in most cases to be 

ignored from latency estimations; 

5) Receive Time. The time the receiver takes to receive and 

to process the packet. 

Clock skew rate [4] (or drift [3] and clock offset are the 

things that change over time and they must be corrected 

whenever synchronization is executed. Due to the mentioned 

time this problem is not that easily resolved. 

Furthermore, such resources as available energy, wireless 

communication medium and computational power limit the 

implementation of reliable synchronization approach. Another 

aspect is network dynamics – due to limited resources nodes 

can often be removed from the network or added thus changing 

topology, or nodes can even be mobile; this could affect 

approaches that use, for example, spanning trees (like LTS) or 

other non-Ad-Hoc network topology [3]. 

III. CLOCK SYNCHRONIZATION APPROACH  

In this chapter we try to describe a simple enough time 

synchronization approach that could be used for time 

synchronizing in the two layered mobile GW network. For node 

pair synchronization we want to use simple roundtrip 

timestamp communication like in TPSN [4], which is based on 

the timestamp exchange among nodes, but as described later, 

with slight modifications. We chose to base on these methods, 

because there has been wide research on these methods and it is 

proven that they can guarantee good enough (according to [3] 

average uncertainty of timestamp intervals is described as 

200 µs and it changes by 2.5 µs with every second passed) 

precision with little overhead. 

From what we described previously we know that the 

following features will be implemented: 

1) Simple network hierarchy – SN, CS, GW, user; 

2) Four different communication links: SN – CS (P2P); CS – 

GW (P2P); GW – GW (Ad-Hoc); GW – user (P2P); 

3) GW ability to synchronize without access to external 

network;  

4) At least one GW has access to external network; 

5) To minimize access time uncertainty nodes will be in 

priority mode when communicating, so that it does not 

have to wait on other nodes. 

Now we have clear concept of network architecture that will 

be used and the features that result from the used network 

architecture. We have decided that the best approach is to do 

synchronization in several separate, but successive steps: 

1) GW synchronization with global time; 

2) CSs synchronization with GW; 

3) CNs synchronization with CS. 

A. Gateway Synchronization to Global Time 

Here we can see two different cases. First, in the network 

only one GW has access to external network. Second, several 

GWs have access to external network.  

In the first case everything is clear – the GW that has access 

to external network will be the source of synchronization time 

and all clusters and every other GW will synchronize to this 

GW. To synchronize to global time a simple NTP 

synchronization will be used. 

In the second case to begin the synchronization process 

correctly first of all master GW must be chosen among GWs 

and then the same approach as in the first case can be executed. 

Possible problems or sources of errors:  the main problem 

with this step is latency, propagation of time among GWs take 

time. To resolve this problem we use separate network (Wi-Fi 

for example) to synchronize GWs and WSN network (at the 

same time) to synchronize to the cluster. This insures that GWs 

receive time as soon as some neighbour has received it. 

If the application is developed for use in wild there exists a 

possibility to equip every node with GPS receiver and then 



Technologies of Computer Control 

 ______________________________________________________________________________________________ 2014 / 15 

59 

synchronizing with global time is not a relevant problem. After 

reading global time from the GPS module every GW is 

synchronized with global time and furthermore between 

themselves. We assume that the time difference between 

different GPS receivers is negligible.  

Possible problems or sources of errors: While using GPS, the 

received data processing time has to be included. As described 

in [6] this time can vary from 50 ms to 100 ms and more if pulse 

per second (PPS) synchronization is not used on GPS module. 

Alternatively this timebound can be a few microseconds. 

To supplement this case we must mention that GPS is not a 

necessary module, though. Synchronization source can be a simple 

node that can access the external network, where the time is 

acquired, like it was described in the beginning of this subsection. 

Another possibility to reduce the cost of external 

communication is to maintain local time, meaning that GWs do 

not synchronize to global time by using the methods just 

described. In this case the master GW should be chosen and all 

GWs should synchronize to this GW time.  

Drawback: synchronization to global time must be done later 

(posteriori) when data is sent to the user; this could lead to 

uncertainties of when some events have happened. 

Furthermore, some message roundtrip synchronization 

algorithm must be used because there is no dedicated hardware 

(as BSD would need) and this could lead to further error in 

lower hierarchy levels because every next hop in hierarchy 

increases uncertainty as described in [3]. 

B. Cluster Sink Synchronization to Gateway Time 

Initially CSs are unsynchronized with GWs and are running 

on some local time TL while GW is now running on global time 

TG. As soon as GW has received global time and synchronized 

to all its neighbouring GWs – it is necessary to forward TG 

further in the network. After which GW responds to CS sent 

SYNC_REQ message. Synchronization here is similar to what 

happens in TPSN. First GW sets priority so synchronization 

with this CS node could be performed uninterrupted and 

informs every neighbouring node of this. After receiving 

SYNC_REQ, GW replies with ACK, containing T1. At ACK 

message reception timestamp T2 is measured. After some time 

response message is sent measuring timestamps T3 and T4. 

Finally the last timestamp message from GW is sent to CS 

measuring timestamps T5 and T6. This is a slight modification 

of TPSN protocol where one more additional message is 

inserted. This is done in hope to minimize the time offset that is 

introduced due to message transmission in GW. Furthermore, 

receiving one more message is not as expensive as sending one. 

 
Fig. 2. Timestamp exchange process. 

So now we can calculate the time offset like this: 

 ∆=
|
(𝑇2−𝑇1)+(𝑇6−𝑇5)

2
|−|𝑇4−𝑇3|

2
  ' (1) 

where T1, T2, T3, T4, T5 and T6 are timestamps that are 

exchanged among synchronization partners and ∆ is average 

time difference between communication partners. TCS now is 

calculated as: 

 

𝑇𝐶𝑆 = 𝑇5 + |∆| + 𝑡calculation,  (2) 
 

where T5 is the last received global time timestamp from GW,  

∆ is average time difference between communication partners 

and tcalculation  is time that is spent to process all received data 

from the moment the last message was received.  

Here with three messages we try to achieve better time offset 

measurement.  But this must be tested or simulated to verify our 

assumptions. 

C. Cluster Node Synchronization to Cluster Sink 

When CS is synchronized with GWs, further synchronization 

to SN can be performed. We know few facts about sensor 

nodes, namely, they are divided in clusters and one CH is 

elected, thus providing one hop route to every cluster node. 

Cluster is homogeneous and nodes have limited resources. 

Here the same synchronization approach as between GW and 

CS will be performed.  

D. Resynchronization 

Due to the instabilities of clock source and other 

environmental factors clock and therefore time drifts away from 

its time. To resynchronize we use the following mechanism – 

after some time has passed, there are methods how to calculate 

it – we perform resynchronization, depicted in Fig. 3. 

Resynchronization is described by  

 

𝑇𝐶𝑆 = 𝑇1 + |∆| + 𝑡calculation  ,  (3) 

 

where ∆ is known from the synchronization which was the 

second time after the calculated time of needed 

resynchronization and T1 is GWs timestamp and tcalaculation is 

time of message processing.  

For this approach to work, nodes must be static, because with 

change of location ∆ will change as well. 

 

Fig. 3. Resynchronization process. 
 

CS 

GW 

RESYNC_REQ ACK 

T1 

T2 



Technologies of Computer Control 

2014 / 15 ______________________________________________________________________________________________  

60 

BEGIN 

SYNC_START: 

IF GW is a master (has access to external network) 

THEN 
 GW receives global time trough NTP 

ELSE  

 IF Master GW not elected 
THEN 

Perform election of master GW 

GOTO SYNC_START 
  ELSE 

   IF Synchronization started 

    THEN 
     Wait for global time 

     IF Global time 

received 
      THEN 

       

  GOTO CHECK_NEIGHBOURS:  
 

CHECK_NEIGHBOURS: 

 IF GW has any neighbour GW left unsynchronized 

  THEN 

   Perform synchronization with neighbour GW 

   GOTO CHECK_NEIGHBOURS 
  ELSE   

GOTO SYNC_TO_CLUSTER  

 
SYNC_TO_CLUSTER: 

 IF GW has unsynchronized CS 

  THEN  
   Perform synchronization to this CS 

   GOTO SYNC_TO_CLUSTER 

  ELSE 
   GW - CS synchronization done 

   GOTO SYNC_TO_NODE; 

 
SYNC_TO_NODE:  
IF CS has unsynchronized nodes 

  THEN  
   Perform synchronization to this node 

GOTO SYNC_TO_NODE 

  ELSE 
   CS - node synchronization done 

   GOTO END; 

END 

Pseudo-code 1. Pseudo‒code that illustrates network‒wide synchronization 
process. 

A. Network-wide Synchronization 

To illustrate more in detail the network‒wide 

synchronization we present Pseudo‒code 1 and Figs. 4 ‒ 8 that 

describe how all network synchronization is acquired. 

In Figs. 4 ‒ 8. for depiction simplicity only GW and CS 

synchronization process is shown. 

Pseudo-code 1 can be visualized with the help of the following 

example of the two layered, clustered sensor network: 

 
Fig. 4. Initial state of network after electing master GW. 

 
Fig. 5. After two steps all neighbors are synchronized. 

 

 
Fig. 6. After the 3rd step one more GW is synchronized and the first GW starts 

cluster head synchronization. 

 

 
Fig. 7. After the 4th step one more GW is synchronized and the first cluster has 
synchronized its second cluster head and two more clusters have started 

synchronization with cluster sinks. 

And so forth until all the nodes are synchronized. 

 
Fig. 8. After the 11th step all GWs and cluster heads have been synchronized. 

To sum up the usage of the two layer network architecture 

we can quite easily provide sensor node synchronization to 

global time in a few easily implementable phases. 



Technologies of Computer Control 

 ______________________________________________________________________________________________ 2014 / 15 

61 

IV. FUTURE WORK 

The biggest issue that we came across is providing actual 

synchronization results from experiments or simulations for the 

provided approach. So we are working on creating both a 

simulation setup in Omnet++ (Castalia) and a simple test bed 

for result comparison. For the test bed we will be using DiGi 

Wi-9C board (or Raspberry PI) as GW and for the sensor nodes 

TI eZ430-RF2500 sensor nodes. 

Besides simulation there is one more interesting case to be 

researched – when two or more separate partitions working on 

the same application need to be synchronized. We need to find 

a reliable way to do this.   

V. CONCLUSION 

In this paper we have suggested the time synchronization 

approach that is implemented in two layer network. The first 

layer is formed from clustered sensor nodes and the second 

layer is formed from mobile gateways. The proposed time 

synchronization approach starts working from top – master 

gateway, to bottom – sensor node, step by step. Basic 

approaches used for synchronization are based on the packet 

delay measurement. The advantage of the proposed 

synchronization system is that different parts of network can 

perform synchronization separately. The greatest disadvantage 

of this paper is that due to time limitation we did not manage to 

provide the data to prove the efficiency of the proposed 

approach.  

REFERENCES 

[1] X. Liu, S. Zhou, “Evaluation of Several Time Synchronization Protocols 
in WSN,” 2010 International Conference of Information Science and 

Management Engineering, Aug. 2010, pp. 488–491. 

http://dx.doi.org/10.1109/ISME.2010.222 

[2] A. Ageev, D. Macii, A. Flammini, “Towards an adaptive synchronization 

policy for wireless sensor networks,” 2008 IEEE International 

Symposium on Precision Clock Synchronization for Measurement, 
Control and Communication, Sep. 2008, pp. 115–120. 

http://dx.doi.org/10.1109/ISPCS.2008.4659224 

[3] R. Kay, P. Blum, L. Meier, “Time Synchronization and Calibration in 
Wireless Sensor Networks,” Handbook of Sensor Networks: Algorithms 

and Architectures, 2005. 

[4] V. Singh, S. Sharma, T. P. Sharma, “Time Synchronization in WSN: A 
survey,” International Journal of Enhanced Research in Science 

Technology & Engineering, 2013, vol. 2, no. 5, pp. 61–67. 

[5] G. Miezitis, V. Zagurskis, R. Taranovs, “Multiple Mobile Gateways in 

Wireless Sensor Networks,” Scientific Journal of RTU, Computer 

Science, vol. 13, 2012, pp. 38–42. 
[6] Lammert Bies, “Time synchronization with a Garmin GPS,” [Online]. 

[Accessed: 31 July 2014]. Available from: http://www.lammertbies.nl/ 

comm/info/GPS-time.html  
[7] NTP internet time servers at linocomm.net [Online]. [Accessed:  

13 Aug. 2014]. Available from: http://ntp.linocomm.net/index.en.html  

[8] H. Karl, A. Willig, Protocols and Architectures for Wireless Sensor 
Networks, John Wiley & Sons, p. 526, 2005. 

[9] I. Demirkol, C. Ersoy, F. Alagoz, “MAC Protocols for Wireless Sensor 

Networks: A Survey,” IEEE Press, 2006, pp. 115–121. 
[10] T. Laukkarinen, J. Suhonen, M. Hännikäinen, “A Survey of Wireless 

Sensor Network Abstraction for Application Development,” International 

Journal of Distributed Sensor Networks, 2012, 12 p., Article ID 740268. 
http://dx.doi.org/10.1155/2012/740268  

[11] D. Mills, “Network Time Protocol (Version 3) Specification, Implementation 

and Analysis” RFC Editor, 1992. 
[12] H. Weibel, “The Second Edition of the High Precision Clock Synchronization 

Protocol,” Zurich University of Applied Sciences: Technology Update on 

IEEE 1588, Embedded World, Nürnberg, Mar. 3–5, 2009.  
 

Gundars Miezitis was born in 1987. Master degree in computer science 

(Riga Technical University, 2012). Now he is a PhD student at Riga Technical 
University, Institute of Computer Control, Automation and Computer Science, 

Department of Computer Networks and System Technology. Currently he is 
working at Riga Technical University. Previous work includes research 

connected with Wireless Sensor Network localization problems and 

localization using radio signal strength.  
Email: gundars.miezitis@rtu.lv 

 

Romans Taranovs had received B. S. as well as Mg. sc. ing. degree in 
Computer Science from Riga Technical University in 2007 and 2009 

respectively. In 2014 he has received Ph.D in Computer Science at Riga 

Technical University. Now he is an assistant at Computer Networks and System 
Technology department of RTU. As well as he is a development lead at 

Accenture. His research interests are self-organizing wireless sensor networks, 

embedded systems and cloud computing. R. Taranov is an IEEE Student 
member since 2010. He has been involved in EU project Stratos and several 

Latvian Council of Science projects.  

Email: romans.taranovs@rtu.lv 

 

Valerijs Zagurskis, received his M. S. in computer science in 1965 from Riga 

Technical University (RTU) and his Candidate of technical science (Ph. D) in 
circuits and systems in 1972 from Latvian Academy of Science, Doctor of 

Technical Science in 1990 in Ukrainian Academy of Science and 

Dr. habil. sc. comp. in 1992 in Latvian University. He is a professor at RTU 
and head of department of Computer networks and systems technology 

(DTSTK), as well as a member of the IEEE and ACM an expert in the Latvian 

Council of Science. His research interests include networks, mixed signal 
system design, MAC protocols, resource scheduling, cross-layer design, and 

cooperative functioning of systems, wireless ad hoc and sensor networks. 

Email: valerijs.zagurskis@rtu.lv 

 

 
Gundars Miezītis, Romāns Taranovs, Valērijs Zagurskis. Klasteros sadalīta heterogēna bezvadu sensoru tīkla inicializācija 

Bezvadu sensoru tīkla mezglu sinhronizācija ir viena no funkcionalitātēm, kas dod vairākas jaunas iespējas bezvadu sensoru tīklam. Piemēram, bezvadu sensoru 
tīklā var izmantot algoritmus, kuri darbojas tikai tad, ja ir zināms sistēmas laiks starp mezgliem. Viena no tādām algoritmu klasēm ir vides piekļuves algoritmi, 

balstīti uz TDMA – Time Division Multiple Access ideju, kad katram mezglam tiek piešķirts konkrēts laika slots, kurā tas klausās vidi un veic komunikāciju, pārējā 

laikā mezgls atrodas miega režīmā. Ja šāda iespēja nebūtu, tad mezglam vide būtu jāklausās nepārtraukti un lieki tiktu tērēti tam pieejamie enerģijas resursi. Cits 
piemērs, ja sensoru tīkls izpilda kādu laika grafiku, piemēram, sensoru tīklam ir jādarbojas naktī vai dienā, visprecīzākais veids, kā to realizēt, ir veikt laika 

sinhronizāciju uz mezgliem un iegūt globālo laiku. Piemēram, situācijā, kad tiktu izmantoti apgaismojuma sensori, atbilde par to, vai ir diena vai nakts, nav 

viennozīmīgi – dienā var būt aptumšota istaba un sensors var pieņemt aplamu lēmumu, ka ir nakts, un sākt nevajadzīgi tērēt savus resursus. Piedāvātā pieeja 

izmanto tā saucamo laika zīmogu nodošanas mehānismu, kad sūtītājs un saņēmējs apmainās ar šiem laika zīmogiem un saņēmējs izrēķina, par cik tad viņa laiks 

atšķiras no globālā laika. Kad tas ir izrēķināts, šis mezgls sev uzstāda jau koriģēto vērtību. Ja mezgls, kurš darbojās, ir vārteja vai klastera galva, tad tiek pārbaudīts, 

vai visi kaimiņu mezgli ir sinhronizēti, izmantojot atbildes ziņojumus – ja netiek saņemta atbilde, ka vajag sākt sinhronizāciju, tad kādā noteiktā laikā tiek pieņemts, 
ka visi kaimiņu mezgli ir sinhronizēti. Tālāk jau uz mezgla var sākt izpildīties vai nu pielietojums, vai kāds cits inicializācijas solis. Šīs darbības ir identiskas gan 

uz vārtejas, gan uz klastera galvas. Tiek piedāvāts arī paņēmiens, kā veikt atkārtotu mezglu sinhronizāciju, jo takts avota neprecizitātes un vides apstākļu ietekmes 

dēļ sinhronizācija tiek zaudēta. Šeit uz mezgla tiek saglabāta tā vērtība, kas ir bijusi izrēķināta iepriekšējā sinhronizācijas ciklā, kas ir ticis izpildīts pēc laika, kas 
tiek uzskatīts par sinhronizācijas punkta zaudēšanu. Šī pieeja dažādām tīkla daļām dod iespēju sinhronizēties neatkarīgi vienai no otras. 

http://dx.doi.org/10.1109/ISME.2010.222
http://dx.doi.org/10.1109/ISPCS.2008.4659224
http://dx.doi.org/10.1155/2012/740268


Technologies of Computer Control 

2014 / 15 ______________________________________________________________________________________________  

62 

Гундарс Миезитис, Валерий Загурский, Роман Таранов. Синхронизация узлов в беспроводных сенсорных сетях с гетерогенной кластерной 

архитектурой. 
Синхронизация беспроводных сенсорных узлов является функциональностью, которая позволяет реализовать ряд новых возможностей в беспроводной 
сенсорной сети. Например, может быть упомянута возможность беспроводной сенсорной сети использовать алгоритмы, которые основываются на 

отсчёте времени в узлах системы. К примеру, алгоритмы TDMA типа,основанные на множественном доступе к среде с разделением времени. В данном 

случае за каждым узлом закрепляется конкретный временной интервал, в котором он слушает среду и общается, а в течение остальной части времени 
находится, к примеру, в спящем режиме. Алгоритмы данного типа позволяют эффективно расходовать энергоресурсы сенсорных узлов – иначе, к 

примеру, узлы должны будут слушать среду постоянно, что приведёт к более быстрой трате имеющихся энергоресурсов. Другой пример, где сенсорная 

сеть работает по графику – такая сенсорная сеть должна работать в дневное или вечернее время. Самым точным способом для составления и выполнения 
графика является использование синхронизации узлов, основанной на глобальном времени. В таких сетях использование дополнительного 

оборудования для определения времени суток не является решением, поскольку существуют ситуации, когда, к примеру, при использовании 

фотоэлементов может быть дан ложный ответ – комната, где установлены сенсорные узлы, может быть затемнена искусственно. Предлагаемый подход 
использует так называемые временные маркеры. При их помощи приёмник и передатчик вычисляют, на сколько локальное время приёмника отличается 

от глобального. После того, как данное различие было рассчитано, узел сам регулирует значение локального таймера. Если узел является шлюзом или 

основой кластера, алгоритм обеспечивает проверку все соседних сенсорных узлов, с помощью ответных сообщений. Если не будет получено никакого 
ответа, что нужно начать синхронизацию, предполагается, что все соседние узлы синхронизированы. Далее на узлах могут начинать работать либо 

другие шаги инициализации, либо само приложение. Эти действия являются идентичными для узлов типа шлюз и глава кластера. В работе также 

предложен метод для повторной синхронизации узлов, поскольку из-за неточности источника тактовой частоты и из-за условий окружающей среды 
синхронизации теряется. Этот подход позволяет синхронизировать различные части сенсорной сети независимо друг от друга. 

 


