doi: 10.7250/tcc.2014.006
2014715

Technologies of Computer Control

Topological Modeling Based Diagnostic Tests
Selection

Matiss Erins, Riga Technical University

Abstract—This article covers the process of software testing.
Test management and creation methods are described within the
scope of the research. The process of test selection through
several stages of project development is discussed and practical
examples of appliance are given for the test organization and
decision making with the help of topological models of software.
The criteria of test ranging are described within scope of each of
the testing levels. The paper indicates the use of topological
structural models in software test creation, and planning.

Keywords—Decision making, software testing, topology.

|. INTRODUCTION

Effective quality assurance systems are the key to a
successful manufacturing. Unacceptable product quality leads
to rapid decrease of market demand [1] as it has critical role in
fields like medicine transportation, energy, nuclear
engineering, where the systems must correspond to the highest
standards of quality. Product testing is the basic function of
quality support. Software testing is inspection with the
objective to collect information about the quality of product
under the test.

This research is directed to the software testing phase and
more precisely to the selection and ranging of pre—made tests.
There are many methods of manual and automated creation of
tests [2], [3] discussed in the literature.

This work describes and categorizes the process of test task
organization and proposes methods for test selection to
systematically choose corresponding subsets of the whole test
set. The process of selection is based on software topology and
evaluation criteria. The main objective is to use the structural
graphs and topological characteristics for test evaluation.

In every phase of software development there is a number
of artefacts acquired for the evaluation of next phase [4].
Testing takes different forms depending on software
development methodologies [5]. There are various structural
control measures like design, quality, test and data measures
[6]. The defects discovered during the testing can be traced
using methodologies described in [7] and [8].

I1. USAGE OF TOPOLOGICAL MODEL IN TEST CREATION

The tests are generated for a sample program called
“Triangle problem” — the algorithm that uses numerical input
values for triangle sides and determines the type of triangle.
The algorithm is widely used as an example and therefore is
extended by additional functionality for test analysis and
generation. A full test creation process is described in [9], not
all of it used in this research. The topological structural model
of triangle program is shown in Fig. 1. The 4 graphs are paths

42

of program flow generated using base path analyses method
(McCabe, 1982). Each of the paths describe program path with
a different result. Other paths are compared with four base
paths for functional redundancy analysis in order to reduce the
total test set.

L P2 - P3 = Pa

k2 L [) @)
() (e I T
=o' £ N (@)
() (= 7 P
i o p: :’/ = :,‘,'
0 Wl & =
=X o
B (4
& Ty
Y |
8 .
-4
= ‘\L» (A — o
[Vadi DY,
:/ { 7"-: % : !
'3 k2 @ (=)
s | (300=) .— E

Fig. 1. Program flow topology represented with four base paths.

I1l. PROPOSED TEST SELECTION PROCESS
DURING THE TESTING

The decision making for test selection is split in four levels
matching to the stages of software development. At first, for
the purpose of component testing, used stages and decision
making schemes are taken into consideration. These are
followed by the integration stage or inter-component
cooperation tests. When all components are developed, it is
possible to accomplish system tests and then to do usability
testing.

A. Component Tests

Computer system consists of basic building blocks —
modules. Modules are created based on structural models,
which can be created based on every module algorithm. As the
model is the smallest unit t in the described stages, it can also
be viewed as a single function or multiple functions depending
on the complexity. The algorithm of a module can be split into
sub—modules which can be combined for view-ability. By
assuming that each module is assigned to a single
functionality, modules can be named by functional meaning
[10]. It is the assumption that those tests to which this module
is assigned, belong to the same component. In this level the

Technologies of Computer Control

2014 /15

TABLE |
INITIAL COMPONENT TESTS AFTER CREATION

Test Structural | Method of Input Expected result | Actual result of last Last execution date (T_peq) | Last execution time (t_iz;)
Number coverage | testcreation values execution
1 0.25 Decisionpath | a=3 Arbitrary OK 12.12.2013 00:00:13
b=4
c=5
2 0.25 Border value a=3 Isosceles NOK 12.12.2013 00:00:12
analysis b=3
c=2
3 0.25 Equivalence a=3 Equilateral NOK 12.12.2013 00:00:12
partitioning b=3
c=3
4 0.25 Worst case a=3 Not a triangle OK 12.12.2013 00:00:13
b=3
c=0

software structural graph is used in order to assess the test
coverage criteria. Graph structure is useful in analysis in the
reflection of logical flow, order of passing the inter-
component control and change of variable values. Structural
topological model at component level is the base for creation
of software tests, based on which higher level tests can be
performed.

When the initial set of tests is created, every generated test
of the set has determined values of:

e Structural coverage of test, kp;

o Affiliation name of the component;

e Time of the test creation.

Initial tests created for the triangle problem can be seen in
Table I.

The purpose for execution of tests in this level is quality
assessment and reduction of test redundancy — providing
structural coverage and detection of potential faults. The
decision making is based on the coverage of structural graph,
weighted particular redundancy measure NR.

Functional test redundancy is detected by comparing the
purpose of each test. If the values match, the tests are
redundant. Structural test redundancy is compared by the path
which this test takes in the program graph. If the same path is
executed repeatedly, the possibility for redundancy is higher.
The correctness of each test step depends on precise values of
function weight rating and of the precise definition of
functions description. Before initial test execution there is no
dynamical statistics of the test. The evaluation is possible by
using the tested componential coverage criterion k, for each
test. This criterion is described by (1), where C; is the chosen
coverage method and NR is test redundancy measure [10]:

kkp=CiNR 1)

The tests are ranged by structural coverage criterion ki p. The
whole test set needs to be executed to reach the structural
coverage t sruke to be as close as 100 %. If all of the paths are
not reachable, then kvazi—optimal structural coverage is below
this value.

After the ranging, tests are added to the executable test set.
The test set is assigned the total structural coverage value Cy
by cyclic addition of set results shown in (2), where C; is
coverage of the current test:

Ck=Cr+C 2

Test addition to the set is continued until the condition of
sufficient percentage condition is reached (3), where Nsyue 1S
number of elements chosen by the criterion:
k100 3

Nstrukt

T
strukt 2

After the execution of the second phase the following test
dynamic criteria are acquired (3), where :

o Test execution time tiz;

o Last test execution date Tpeq;

o Test failure statistics (test passed or not).

After the execution of tests it is possible to evaluate the test
fail statistics for the component under the test. The failed tests
are then analyzed and rated by importance and priority
(Table I1).

TABLE 11
TEST SET AFTER EXECUTION
Test Structural Method of Input values | Expected
Number coverage, kp | test creation result
1. 0.25 Decision a=3 Arbitrary
path b=4
c=5
2. 0.25 Border value | a=3 Isosceles
analysis b=3
c=2
3. 0.25 Equivalence | a=3 Equilateral
partitioning b=3
c=3
4. 0.25 Worst case a=3 Not a
b=3 triangle
c=0

43

Technologies of Computer Control

2014715

The aim of the repeated testing is to test if the failures
reported previously have been fixed. Decision is made based
on the composite value for the set of dynamic criteria.
Repeated testing executes the tests that were marked as
“NOK?” in previous executions. Decision is made based on the
following parameters (4):

kdef = (Uskp, (4)

where

Ws defect weighted severity ;

Ko defect priority.

The tests are ranged by the dynamic criterion. After several
cyclic re—testings the last result is accepted. Test management
tools like Testia Tarantula can store up to 3 last execution
results for each test. The repeated testing set contains only the
tests with the last failed execution.

B. Integration Tests

Integration testing is the phase when separate modules of
software are tested in groups. It is done before the system
tests. Integration tests consist of unit tests with already
valuated criteria, which are valued at the component testing
phase. Integration tests are added by specified integration test
plan. Unit tests are combined and added or assigned to these
integration tests.

Components are nodes of component relation graph.
Relational graph can then be condensed to a single node of
integration graph. Edges between the nodes of the integration
graph connect the output of the structural node to the input of
the continued structure in structural level. When the number of
graph nodes reach 100 it is suggested by structural modelling
to use graph condensation. In case of the systemic structural
graph the cyclic structure is too complex, the structure is
scaled [11]. The order of setting the test steps in integration
tests follows by the component relations in oriented graph.

Statement: the edge created between nodes does not have a
role of input or output signal or exposure. It points out that
there exists cause and effect relation between these nodes and
reflects binary relations in the set of functional properties. [11]

S

° BS Cs

\ Component A / \ Comgonem B \ Component C /

Fig. 2. Program graph splitting components.

Program decision graph (Fig. 2) is separated for testing into
components which are developed and gradually integrated to
real project. The following approach facilitates project
development and creation of tests. Parts of a graph with the

44

same assigned functionality are grouped under the same
functional node, but edges in Fig. 2, like {A5, B1} and {BS5,
C1} are turned into edges of the integration graph {A, B} and
{B, C} (Fig. 3). For oriented graph the successor set of a node
consists of nodes to which this is the input edge. For the same
node the predecessor set is formed by nodes to which this

node is outgoing edge apex.
ot e —{(a)

Fig. 3. Functional condensation graph of a structural model.

Integration phase input conditions:

e Project code has passed component testing phase;

e Product satisfies the requirements of performance and

memory detailed in functional test specification;

o Software has passed tests for basic evaluation of failures;

o All component level high priority issues are fixed;

e Documentation is updated to correspond to the current

status of the project.

There are following strategies in integration phase
discussed within the scope of this research — top-down and
bottom-up integration.

With the top-down approach the main module of software is
tested at first, for other modules there are specific drivers
created. Then planwise the drivers are replaced with actual
component with drivers (Fig. 4). This is done until there are no
other modules called. It is important for the first test modules
which use interfaces, 1/0 operations and modules which have
the highest failure rate [12].

1. Component A 2.Component C
tests tests

Component A
tested
Component B Component C Component B i
4.1

driver driver driver
Component A D tests Component A
tested tested

e, T e

Component C Component B Component C
tested tested tested

- i

3. Comy
B tests

Component D

Fig. 4. Top-down testing.

The benefits of the top—down approach are: 1) Reduced
time for system tests; 2) Highest level interfaces are tested
first while testing also the lowest levels. During these tests
most failures are localized in the last recently added modules.
The disadvantages of the method are: 1) Need to create
specific drivers; 2) It is relatively hard to find test data for new
modules. The testing data flow is also including non—oriented
graph and the testing of interface is costly.

Technologies of Computer Control

2014 /15

The bottom-up testing approach takes a module which does
not call other modules. At first this module passes the
component testing phase and the testing is concluded for the
modules calling already the tested ones i.e. interface between
subsystems. Tests can be executed for multiple groups in
parallel (Fig. 5). Simple test data can be created for smaller
modules, but the problem lies in the complexity of input or
overall environment simulation. In the case of many modules,
large number of subsystems will be tested at the same time.

1. Component D

testing

3. Component C

testing

2. Compenent B
testing

=

Component A
tested

4. Component A
testing

Component A
tested

Component C
tested

Component D
tested

Fig. 5. Bottom—up testing.

To calculate the number of integration tests for the
component (5) is used, where V is the cyclomatic complexity:

V= Z?]—1 Vi Q)

The total number of integration tests for the 3 components
used in tests is the sum of tests for each component in the test
set (6).

V=(4)+(B)+(0) (6)

The weight is each step distance in graph. The criterion is the
sum of sub-graph coverage or the sum of the component
coverage. All pair paths are a subset of paths that are
combined from sub path nodes. Sub path and sub path set is
characterized by the relation of many-to-one. If sub path
includes a loop, the sub path associated with the set does not
affect the change in the number of loop iterations. The set of
pair path is the set of edges that includes pair paths. For each x
in test T the set of exercised paths includes all pair path sets
that are defined for all reachable users. If a path involves
loops, all path testing requires two test tasks, the first does not
involve passing loop elements, the second executes the loop
element for a given number of times.

Phase 1: Test base sets are chosen based on the structural
parameter of each module (Fig. 6).

Fig. 6. Separate test creation for sub—-modules B and C.

Phase 2: Test base is created and selected for the edges
connecting the main module A with sub—modules B and C

(Fig. 7).
y

A

7y

B c

Fig. 7. Integration of module A with modules B and C.

The complexity of integration S1 is defined for a program
with n number of modules (G1to Gy) by using equation (7):

S1 = (SUM iv(Gi)) —n + 1 @

The complexity of integration measures the number of
independent integration tests in the scope of full software
design. In the integration level test tasks for separate modules
are combined by insertion into a single test task using the
principle that the last step of the first task is the first step of
the second task, in this way creating the integration level of
test steps from test tasks in component level. The single test
step is defined by the ID — identifier. By looking at the test
creation for the triangle problem (Fig. 8), the program is split
into three components A, B and C. These are modules which
are integrated step—by-step into the solution and the
integration tests are made.

1. Integration

/ Result
representation
component (C)

Triangle solver

Data input
compaonent (B)

kcompaonent (A)

2. Integration
Fig. 8. Integration level graph.
For the execution of the first integration stage there is a test

which contains merged A and B components (Table Ill) as
well as the Test 2 for the second integration.

45

Technologies of Computer Control

2014 /15
TABLE Il
INTEGRATION LEVEL TEST EXAMPLES Integration test 2
Integration test 1 Step | Component Wt Kep Kip W ke
Step 1D Component |Action Result ID
1 A Input a=3, b=3, |Dataacceptable
c=2
1 A 0.5 0.141 | 0.07 0.16 0.0335
2 B Input a=3, b=3, |[Isosceles
c=2
2 B 1 0.25 0.25 0.02
Integration test 2
Step ID Component |Action Result 3 C 1 0.4 0.4 0.025
1 A Input a=3, b=3, |Dataacceptable
c=2 The exit conditions for the integration phase are as follows:
2 B Calculate a=3, b=3, |Isosceles e Component setup tests are done;
c=2 o All priority defects are fixed and closed;
3 C Triangle type and sides Image of e Earlier documentation is updated to match the current
a=3,b=3,c=2. isosceles triangle condition

The execution of integration level tests requires evaluation
of structural coverage for each test. The distance between the
two components is the length of path or the number of edges
in the integration graph. The weight for this criterion Wax is
expressed in (8):

1
Watt = 7 - (8)

The coverage measure of test step integration is calculated
using the weighted component distance measure. The weight
indicates (9), the order of components compared:

kip=was kk.p . (9)

The total functional test value for integration level is the
weighted sum of individual steps (10). The value is weighted
by the rate of the step included in the set:

Nip

Wb = Ns;p*100 (10)
The equation for k; integration test value (10):
ke = Tyt kipWs. (11)

The tests are put based on test severity criterion ki in
descending order by ranking higher tests with a higher value
of k.. (Table 1V).

TABLE IV
TEST OVERVIEW

Integration test 1
Step | Component | was Kkp kip 73 ke
ID
1 A 1 0.141 | 0.141 | 0.165 | 0.0235
2 B 1 0.25 0.25 0.02

46

C. System Tests

During the system testing the behavior of system or product
is tested against the expected behavior stated in the
documentation. It is possible to include tests based on risk or
requirements specification, business processes, use cases or
other high level description of system functions and
interaction with operating system or system resources. System
testing is chosen as the last phase to gain confidence that the
object under the test corresponds to the specification. System
testing is held by test specialists of independent testers. System
testing is intended to check both the functional and the
structural requirements by focusing on the functional side [13].

System tests are formed from integration phase tests and
component tests by using the requirement traceability matrix.
Requirement traceability matrix is a document with the
many-to-many correlation of two documents (Table V). This
approach is used for the system test creation, by adding user
requirements to tests and the evaluation of quantity percentage
kreq.

TABLE V
EXAMPLE OF TRACEABILITY MATRIX
Test Requirements P1 | P2 | P3 | kreq
task Total 2 |2 |1
T1 2 X X 40 %
T2 2 X X 40 %
T3 1 X 20 %

Table V consists of three tests and 3 requirements bound
together. Each test has the percentage evaluation of
requirements covered by the test and a number of tests that
cover the requirement. System tests are executed in a similar
way to integration tests where the criterion of requirement
coverage Kreq is Used as a measure.

Rating = Structural coverage + requirements coverage

The value of requirement coverage is calculated by the ease
of selected system test. System tests are given values of
selected weight wreq, which depends on the volume of the
selected test set. This paper describes 3 test set volumes — a

Technologies of Computer Control

2014 /15

small volume test called “smoke test”, a requirement volume
and a full test set.

The small test set idea is to check the normal function of the
main system components. If these tests are repeated, it is
possible to assign tests with higher severity for a repeated
testing in order to check for last changes and they are
characterized by the highest fault possibility. The purpose of
the easy test set is to call each main function of the system by
taking into account the time constraints.

The requirement tests depend on the requirement coverage.
Requirement coverage of 100 % means that the set tests all
requirements are assigned. Requirements can be visualized in
program integration graph by adding requirement description
for each component. Fig. 8 contains the component nodes
created in lower level tests with attached requirement
description with the chosen level of detail, which are then
associated with tests.

Triangle
drawing
component (C)

Data input
component (A)

Triangle problem
| component (B)

Recognise non-
triangle

Draw triangle
linput integers

rite result
output text

Qutput result as
words

Inpu't decimal

Fig. 9. Component level graph with added requirements.

Before system activation or launching into production
environment a full system test is executed. In the case of the
full test set tests are organized by the test coverage structural
criterion combined with the dynamic criterion of test
execution time. The time constraint is regulated by sorting
tests in ascending order, where first executed are the tests with
shorter average duration and higher structural coverage having
the longest execution period. The exit criteria for the system
tests are:

e Requirement coverage for tests has reached a set value;

o All defects with high or average severity are fixed;

e Software is tested to work with all supported devices,

system configurations and other products [14].

D. Usability Tests

When the tested system is passed to the real user or client
usability tests are made. The purpose of testing of the
application is to make sure that the feature or use case is
included in the system and used the proper way. The test
selection is similar to the integration stage, except that the
tests are made by focusing on user stories not on actual
components [15].

Usability tests are executed when it is possible to measure
the ability for a system or a subsystem to respond to the
requirement specification usually after the implementation of
larger project parts or system versions. During this phase, new
tests are generated based on sequential diagrams. Also there
are automated tools for test generation [16] using principle of
usage cases. This paper is focused on the tests created during
previous phases and on the customization of tests in usage
level. Entry criteria for usability phase are as follows:

o Usability test plan is confirmed;

o All high priority system level issues are solved and

defects fixed;

o Software is capable of working on all supported devices

and platforms [17].

Usability level tests consist of user steps — sequential
actions which must be executed using the software under the
test. These tests check possible user roles and access to the
role-specific systemic functions. Usability tests can be done in
the field of security testing by means of checking boundaries
set in software. Structural topological models of system can be
applied for usability test creation when component tests are
combined and the steps of usability tests are then matched
with the nodes of integration graph the decision making during
this phase is based on system level requirements. Usage
coverage criterion is used for test ranging. Output criteria for
the usability testing stage are:

e Usability tests should reach the threshold of usability

coverage (i.e. 80 % of tests done);

o All defects of usage marked as “high priority” should be

tested and fixed.

IV. RESULTS

Organizational methods and structural approach to the test
selection is the basic instrument for automated test selection
and creation and execution. The test management software
structure was discussed with possible solutions to access and
acquire test data form data base without affecting the test
management structure. Theoretical approach of test organization
with given practical examples is given in this paper. Tests can
be organized on different levels matching the stages of project
development. Independent test analysis can be held in any of
the four stages described and the results are used for higher
level test organization. Sorting criteria are defined for use in
each of the levels. The objective of the research is the creation
of automatic test selection tool and shared database for tests.
The possible solution is shown in Fig.9. The test tool
integration is intended to have a user level access to the tests
stored by the test management tool. The proposed test
processing module is based on the decision making and test
selection block that uses methods described in this work. As
the testing environment of “Testia Tarantula” management
tool supports agile software development methodology as well
as the methods for current purpose support step wise
integration, the planned solution would be used in this project.

Jestu parvaldibas riks ‘Tamntulal Testu pakesu veido$anas programma]

Datu baze (MySQL)

~.| | Datu ieguve
no datu bazes

—1-
%‘rv/
Testu statistika {m 5

Datu apstrade

‘ Lietotaja saskame ‘ Lietotaja saskarne ‘

Fig. 10. Test packet selection tool integration.

47

Technologies of Computer Control

2014715

The test management tool “Testia tarantula” is an open-
source project which supports bug tracking features and other
software tools like “Jira” and “Atlassian” [18]. This solution
supports agile software development methodology with multi-
user support. The structure of the test data base can be
accessed by any “MySQL” database manager. The
management solution is built on Ruby programming language.

The concept of the automated test selection tool is to
display the test set using the structural graph of software
which can be scaled by the selected stage of the development
to facilitate the selection of test set. The output data for the
proposed module consist of a ranged test set that is updated
before the test execution. The implementation of the described
methods into an automated tool minimizes the manual test
redundancy and improves efficiency of the regression test set,
requiring more detailed research and usage statistics. The
solution can be used for small to medium scale projects where
the structure of a single component or systemic component
does not exceed 100 to 1000 units. Larger scale projects would
require separation of low level components. Decision paths
can be modelled by using structural models created in test
selection. Structural and functional models are used to
graphically analyze software structure and to evaluate the
impact of the selected test set. Usage of structural graphs in
functional testing can indicate the functional redundancy.

REFERENCES

[1] American Society for Quality, Glossary for word “Quality”, [Online].
Auvailable: http://asq.org/glossary/q.html [Accessed Nov. 6, 2014].

[2] R. Nilsson, “Automated Selective Test Case Generation Methods for
Real-Time Systems,” M.Sc. thesis, Comp. Sci., Univ. of Skovde, 2000.
[Online]. Available: http://www.diva-portal.org/smash/get/diva2:2866/
FULLTEXTO02 [Accessed Nov. 6, 2014].

[3] J. Rushby, “Automated Test Generation and Verified Software,” SRI
International, [Online]. Available: http://vstte.inf.ethz.ch/Files/rushby.pdf
[Accessed Nov. 6, 2014].

[4] ISTQB Foundation, Software Development Life Cycle phases.
[Online]. Awvailable: http://istgbexamcertification.com/what-are-the-
softwaredevelopment- life-cycle-phases/ [Accessed Nov. 6, 2014].

[5] C.Larman. Agile and lIterative Development: A Manager's Guide,
Addison-Wesley, 1st ed., ISBN 9780131111554, pp. 9-17.

Matiss Erins. Topologiskaja modele$ana balstita diagnostisko testu izvele

[6] S.H.Kan, “Software Quality Metrics Overview,” in Metrics and
Models in Software Quality Engineering, 2nded. ch. 4. pp. 85-120.
[Online]. Available: http://www.pearsonhighered.com/assets/hip/us/hip_us
_pearsonhighered/samplechapter/0201729156.pdf [Accessed Nov. 6, 2014].

[7] ISTQB, “Certified Tester Advanced Level Syllabus: Test Analyst,”
p. 64,2012. [Online]. Available: http://www.istqb.org/downloads/
finish/46/95.html [Accessed Nov. 6, 2014].

[8] H. Stone, Software Metrics Proposal, 1998. [Online]. Available:
http://softwaretestingservice.com/SoftwareMetricsProposal.pdf
[Accessed Nov. 6, 2014].

[9] R.S.Pressman. Sofiware engineering: a practitioner’s approach, 4th
ed., McGraw-Hill, Inc. 1997, pp. 852.

[10] Agile alliance. Unit testing. [Online]. Available:
http://guide.agilealliance.org/guide/unittest.html [Accessed Nov. 6, 2014].

[11] J. Osis, J. Grundspenkis, Z. Markovi¢s, Topological Modeling of
Complex Heterogeneous Systems: Theory and Applications. Riga: RTU,
2012. 407 p. ISBN 9789934507014.

[12] S. Anderson, School of Informatics. Integration Testing [Online].
Available: http://www.inf.ed.ac.uk/teaching/courses/st/2011-12/Resource-
folder/10_integration.pdf [Accessed Nov. 6, 2014].

[13] ISTQB, “Certification — What is system testing?” [Online]. Available:
http://istqbexamcertification.com/what-is-systemtesting/ [Accessed May 19,
2014].

[14] R.Vivek, Entry and Exit Criteria for Different Stages of Testing.
[Online]. Available: http://vivekranjan1980.wordpress.com/2010/03/23/
entry-and-exit-criteria-for-different-stages-of-testing/ [Accessed May 19,
2014].

[15] L. Luo, “Software testing techniques. Technology Maturation and
Research Strategy,” [Online]. Available: http://www.allbookez.com/
pdf/14d8it/ [Accessed May 19, 2014].

[16] S. Kariyuki, H.Washizaki, et.al., “Acceptance Testing based on
Relationships among Use Cases,” 5th World Congress for Software
Quality, p. 25, 2011. [Online]. Available: http://www.juse.or.jp/
software/390/attachs/paper04.pdf [Accessed Nov. 6, 2014].

[17] ISTQB, “Advanced Level Syllabus. Test Analyst,” p. 64, 2012. [Online].
Auvailable: http://www.istgb.org/downloads/finish/46/95.html [Accessed
Nov. 6, 2014].

[18] Tarantula. (2014) Test management tool “Testia Tarantula” manual.
[Online]. Available: http://www.testiatarantula.com/ [Accessed Nov. 6,
2014].

Matiss Erins received the degree of B. sc.ing. in 2012 and the degree of
Mg. sc. ing. in 2014 from Riga Technical University.

He is a PhD student with the Faculty of Computer Science and Information
Technology, Riga Technical University.

His research interests are: mobile software development, embedded hardware
and robot control systems.

E-mail: matisserins@rtu.lv

Pétijuma sikak apskatita testu uzdevumu parvaldiba un testu uzdevumu veidoSanas metodes. Teorétiskie pamati satur informaciju par programmatiiras izstrades
procesu kopuma — izstrades posmi un metodologija, tapat detaliz&ti apskatits testéSanas process un ta ieklausana izstrades dzives cikla. Darba apkopoti
programmatiiras izstrades procesd izmantojamie krit€riji. P&tijuma analiz€ta diagnostisko testu atlases 1émumu pienemsanas gaita dazados programmatiras
integracijas Itmenos, ka ari apskatita grafu modelu izmantoSana testu izveidé un planosana. Apskatitas iesp€jas ar grafu ipasibu palidzibu samazinat testu
atkartoSanos un noteikt testu atlases kritérijus atSkirigiem testéSanas veidiem. Darba aktualitate tiek pieversta Sobrid programmatiiras izstradé aktualajai sp&jas
izstrades metodologijai un testu procesa ieklauSanai taja. Darba merkis ir apskatit testu uzdevumu organizéSanu un veikt testu apakSkopas atlasi, izmantojot
uzdotos kritérijus un atlases metodes, balstoties uz programmatiiras topologiju. Citiem vardiem sakot, izpé&tit iespgjas strukturalo grafu Ipasibu izmantoSanai testu
izveid€ un testu kopas izlases novertgjumu iegiisana. Darba tiek aplikoti esoSu testu uzdevumu parvaldibas riki, veidojot to salidzinadjumu. Uzmaniba pieversta
bezmaksas rikam “Testia Tarantula” manualai testeSanai.

Matuce Epunbin. Boi0op 1MarHoCcTHYEeCKHX TeCTOB HA OCHOBE TONOJIOTHYECKOT0 MO/Ie THPOBAHUS.

B uccnenoBaHuu JeTanbHO PacCMOTPEHBI METOIB! YIIPABICHHS TECTOBBIMH 3aJaHUSIMU U (JOPMHPOBAHUS TECTOBBIX 3aJaHUH. TeopeTuueckasl OCHOBA pabOTHI
COZIEPXKUT MH(OPMAIMIO O Tpolecce Pa3pabOTKU MPOrpaMM B IEJNOM — 3Talbl M Pa3’HOOOpa3He METOJOJIOTHH, a TaKKe AETadbHO PAacCMOTPEH IPOIEcC
TECTHPOBAHUS U BKJIIOUCHHS €€ B JKM3HEHHBIH LUK pa3paboTku. B paboTe mpeacTaBieHbl KpUTEPHU MIPOrpaMMBI, HCIONB3YeMOi B mporecce paspaboTtku . B
HCCIIeIOBAHHN IPOAHATU3HPOBAH OTOOpP AMATHOCTHYECKHX TECTOB B XOJE NPUHATHS PEIICHHH Ha PA3IMYHBIX ypPOBHSIX IPOTPAMMHOI HHTETPAallUM, a TaKKe
PaccMOTPEHO HCIIOIb30BaHUE TpahHIeCcKOi MOJICNH B CO3JaHHH U INIaHUPOBaHUH Tecta. OOCY)KIaI0TCsl BapHaHThl yMEHBILIECHHS Y¥CIIa TOBTOPEHUN HCIIBITAHU
U TECTOB C HOMOIIBIO CBOHCTB rpadya, YTOOBI ONPEAeNHTh KPHTEPUH OTOOpa TECTOB JUIS Pa3IHYHBIX BHIOB TECTHpOBaHUS. B pamkax paOoTsl HcciemoBaHa
(yHKIHOHAIBHAS BO3MOXKHOCTH JIOIONHEHUSI M CTPYKTYpHOTO aHalH3a TecTa yIpaBileHdeckoi cpenbl «Tarantulay ams co3maHus JOHONHUTEIBHOTO
MHCTPYMEHTa BBIOOpA TECTOB HA OCHOBE PE3YJIbTATOB HCCIIEJOBAHUS.

48

http://asq.org/glossary/q.html
http://softwaretestingservice.com/SoftwareMetricsProposal.pdf
http://istqbexamcertification.com/what-is-systemtesting/
http://www.istqb.org/downloads/finish/46/95.html
http://www.testiatarantula.com/

